
J .  Fluid Mech. (1989), vol. 202, pp .  17-41 

Printed in Great Britain 

17 

A study of linearized oscillatory flow past particles 
by the boundary-integral method 

By C.  POZRIKIDIS 
Department of Applied Mechanics and Engineering Sciences, R-011, University of California at 

San Diego, La Jolla, CA 92093, USA 

(Received 15 January 1988 and in revised form 26 September 1988) 

Viscous oscillatory flow past particles, governed by the unsteady Stokes equation, is 
considered. The problem is addressed in its general form for arbitrary flows and 
particle shapes using the boundary-integral method. It is shown that the leading- 
order correction to the force exerted on a particle in unsteady flow may be inferred 
directly from the drag in steady translational motion. For axisymmetric flow, a 
numerical procedure for solving the boundary-integral equation is developed, and is 
applied to study streaming oscillatory flow past spheroids, dumbbells, and biconcave 
disks. The effect of the particle geometry on the structure of the flow is studied by 
comparing the streamline pattern associated with these particles to that for the 
sphere. The results reveal the existence of travelling stagnation points on the surface 
of non-spherical particles, and the formation of unsteady viscous eddies in the 
interior of the flow. These eddies grow during the decelerating flow period, and shrink 
during the accelerating flow period. For particles with concave boundaries, unsteady 
free eddies may originate from an expansion of wall eddies that reside within the 
concave regions. 

1. Introduction 
Oscillatory flows are of interest in several fields of engineering and science, most 

notably in the areas of aeroacoustics, chemical engineering, and biomechanics. There 
is a rich phenomenology associated with these flows that has prompted a number of 
experimental and theoretical investigations. 

In general, previous work may be classified in two categories that address internal 
and external flows respectively. Typical in the first category are studies of oscillatory 
flow within furrowed and indented channels (Hall 1974; Sobey 1980, 1982, 1983, 
1985a, b ;  Ralph 1986), flow over square cavities (Ghaddar et al. 1986), and flow 
within collapsible tubes with oscillating cross-section or with oscillating indentations 
(Pedley & Stephanoff 1985; Padmanabhan & Pedley 1987). Topics of interest include 
the analysis of steady streaming motion, the description of the flow kinematics as a 
function of the Strouhal and the Reynolds number, the study of particle convection, 
fluid dispersion, and convective scalar transport, and the analysis of hydrodynamic 
instabilities triggered by flow oscillations. The second category includes studies of 
flow past isolated particles and drops (or in general, finite bodies) or collections of 
them, with typical applications in the fields of acoustics and suspension mechanics 
(Riley 1967; Pienkowska 1984). An important objective of the analysis is the 
computation of the force and the torque acting on the particles, as well as the 
derivation of equations describing the motion of the particles (Clift, Grace & Weber 
1978, ch. 11) .  
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One of the most remarkable features of viscous oscillatory flow is its ability to 
enhance convective transport and fluid mixing while maintaining a laminar 
environment (Sobey 19853). This is attributed to a rather complicated kinematics 
involving the generation and subsequent expansion of viscous eddies in the vicinity 
of curved boundaries. This feature offers opportunities for novel engineering design 
in processes involving sensitive materials such as chemical emulsions and blood. 

In the present paper we are concerned with external oscillatory flow past particles. 
A t  the outset, we would like to state the basic premise of our analysis, which is that 
the frequency parameter of the flow, defined as p = w d 2 / v ,  is larger than the 
Reynolds number, Re = Ud/v (w is the angular velocity, d is the characteristic sizc of 
the particle, and U is a peak velocity in the flow). More precisely. we require that 
p > cRe, where c is a constant dependent on the geometry of the flow. Furthermore, 
since p is equal to the product of the Reynolds to the Strouhal (st) number, p > cRe 
implies that S t  = wd/U > c .  Straightforward scaling of the equation of motion shows 
that this assumption allows linearization of the equation of motion, with considerable 
simplifications in the analytical and computational procedures (Happel & Brenner 
1973, $2.10). Physically, linearization requires that the maximum excursion of fluid 
particles, over one period of the flow, is small compared to the characteristic size of 
the particles (Batchelor 1967). In  this fashion, the Lagrangian time derivative in the 
equation of motion may be accurately approximated by the Eulerian time derivative. 
Furthermore, linearization allows us to infer general time-dependent flow from its 
harmonic components through the use of integral transforms (Basset 1888 ; Lawrence 
& Weinbaum 1986). For instance, the instantaneous force on a particle in general 
time-dependent motion may be deduced from that in oscillatory motion. Examples 
of physical situations where linearization is valid include Brownian motion, and the 
unsteady interaction of particles settling a t  low Reynolds numbers. A numerical 
demonstration of the validity of linearization a t  high Strouhal numbers (and a t  finite 
Reynolds numbers) was given by Sobey (1980, $4.4). 

Linearized viscous flow exhibits unique kinematic characteristics. At low 
frequencies, it reduces to steady (or more precisely, quasi-steady) Stokes flow with 
diffuse vorticity. At high frequencies, it reduces to potential flow everywhere, except 
within thin boundary layers of thickness ( v /w) i  residing along the solid boundaries of 
the flow. If the flow has a mean component, these oscillatory boundary layers, called 
Stokes layers, may coexist with Prandtl type boundary layers at high Reynolds 
numbers. Linearized unsteady viscous flow is reversible. This implies that there may 
not be a lifting force on a particle accelerating in a symmetric flow domain, for 
instance on a sphere accelerating above and parallel to a plane wall. This may be 
contrasted to the case of inviscid potential flow. Furthermore, linearization prevents 
the onset of inertial, steady streaming flow. This may be considered as a nonlinear, 
finite Reynolds number effect on the basic linear flow, and may be treated as such 
from an analytical or computational perspective. 

Previous work on linearized viscous flow past isolated particles may be traced back 
to the seminal work of Stokes (1851) who studied flow due to  longitudinal oscillations 
of a sphere or a cylinder. A number of subsequent authors have addressed flow due 
to oscillations of spheroids and disks. More specifically, the spheroidal shape was 
considered by Buchanan (1891), Kanwal (1955), Lai & Mockros (1972), and 
Lawrence & Weinbaum (1986, 1988). Unsteady particle interactions have also been 
studied both in the context of the unsteady Stokes’ equation (Pienkowska 1984) and 
of the mathematically equivalent Brinkman’s equation (Kim & Russel 1985). I n  
addition, certain general theorems pertaining to linearized motion have been 
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established. These include the reciprocal relationship, the boundary-integral 
formulation, and Faxen’s laws. A more detailed review of the literature and further 
references may be found in the recent articles by Lawrence & Weinbaum (1988), and 
Pozrikidis (1988 b ) .  

In  this paper we seek to obtain further insights into the physics of unsteady 
viscous flow through numerical solutions of the unsteady Stokes equation. One of our 
main objectives will be to analyse the effect of boundary geometry on the structure 
of the flow, with special emphasis on unsteady flow reversal. To this end we note that 
whereas steady flow reversal has been studied rather extensively by computational 
and analytical means (Hasimoto & Sano 1980), unsteady flow reversal has received 
relatively little attention (Bentwich & Miloh 1978; Smith 1987). In our computations 
we will consider two families of particle shapes including spheroids, and particles in 
the form of biconcave disks and dumbbells. The former will allow us to study the 
effect of particle aspect ratio, and the latter will allow us to examine the effect of 
concave boundaries on the structure of the flow. 

From the point of view of computational fluid dynamics, our work was triggered 
by the success of certain recent numerical methods in the area of low-Reynolds- 
number hydrodynamics. These include the singularity method (Chwang & Wu 1975; 
Dabros 1985; Kim 1986), the method of multipole expansions (Gluckman, Pfeffer & 
Weinbaum 1971), and the boundary-integral method and its variations (Pozrikidis 
1 9 8 8 ~ ) .  These methods have proven to be invaluable in the study of various exterior, 
interior, steady and quasi-steady creeping flows, in two-dimensional, axisymmetric, 
and three-dimensional geometry, including problems with free surfaces and fluid 
interfaces. The unsteady Stokes equation (as well as the related Brinkman’s 
equation) is mathematically similar to the steady Stokes equation, in the sense that 
it constitutes a linear, elliptic, boundary-value problem. Thus, the above methods 
have their counterpart for unsteady flow, and their implementation provides us with 
new techniques for tackling fundamental problems of longstanding interest. 

Kim & Russel (1985) adopted the method of reflections and the method of 
multipole expansions to study the interaction of two spheres in Brinkman’s medium. 
Pozrikidis (1988 b )  considered the singularity method for unsteady linearized flow, 
and addressed a set of fundamental problems involving axisymmetric particles. 
Although in principle the singularity method may be formulated for general three- 
dimensional flows and arbitrary shapes, in practice, it  is most efficient for slender 
particles or for particles with relatively simple, convex boundaries. In  this article we 
address the boundary-integral method for oscillatory linearized flow. Briefly, in this 
method, the velocity field is expressed as an integral of the velocity, stress, or in 
general, of singularity densities along the boundary of the flow, and the solution to 
the problem is reduced to the calculation of the boundary distributions. In turn, this 
requires the solution of Fredholm integral equations of the first or second kind. 
Effectively, the dimension of the mathematical problem is reduced with respect to 
that of the physical problem by one, resulting in considerable simplifications. One of 
the basic strengths of the boundary integral method is that it may be readily 
implemented for concave or irregular boundaries, and for arbitrary ambient flows. 
The origin of the boundary integral method for unsteady linearized motion may be 
traced back to the work of Oseen (1927). Its precise formulation for oscillatory flow 
is due to Williams (1986). 

In $2 we present a short derivation of the boundary-integral formulation. 
Although in our derivation we consider infinite external flow past particles, we 
indicate that the method has a much more general applicability, and may be readily 
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adapted to describe internal, semi-infinite, or bounded flows. Next, we consider the 
asymptotic behaviour of the integral equation a t  large and small frequencies, and 
outline a formal way of obtaining asymptotic results for the total force acting on a 
particle. It is in the merit of the boundary-integral formulation that these results are 
obtained with very little analytical effort, and in a compact form. In  $ 3  we consider 
the numerical solution of the integral equation for axial streaming flow past 
axisymmetric particles, or equivalently, for flow produced by longitudinal oscilla- 
tions of axisymmetric particles. In  $4 we present numerical results for spheroids, 
biconcave disks, and dumbbells. We conclude the paper in $5 with closing remarks. 

2. Formulation 
We consider oscillatory flow past a single particle, or a finite collection ofparticles, 

governed by the unsteady Stokes' equation. We assume that the flow is infinite 
in extent in all directions. Thus, we write for the velocity and the pressure U = 
uexp ( - i d )  and P = pexp (-iwt), and substitute into the linearized equation of 
motion to obtain a Helmholtz-type equation. I n  dimensionless form this reads 

h2U = -vp+vzu. (2.1) 

The frequency parameter h2 is defined as h2 = -iwd2/v, where d is characteristic of 
the size of the particles and v is the kinematic viscosity of the fluid. The continuity 
equation remains unaffected with respect to u, 

v-u = 0. (2.2) 

Noting that (2.1) is a linear elliptic equation suggests that its solution may be 
expressed as an integral along the boundaries of the flow. To develop the boundary 
integral formulation, we follow the well-established theory for steady Stokes flow 
(Ladyzhenskaya 1969), and write the reciprocal relationship 

div (ua crik - ui crak) = 0, (2.3) 

u* and u are arbitrary non-singular solutions to  the system (2.1), (2.2),  with 
corresponding stress fields Q* and Q. We now adopt the oscillating Stokeslet, centred 
on an arbitrary point x,, as our solution for u* (Williams 1966). Thus, reverting to 
dimensional variables we set 

(2.4a) 

(2.4b) 

where f = x-x,, and a is an arbitrary constant expressing an oscillatory point force. 
The tensor S(x, A )  is given by 

6.. 2.2. 
f l . . = x A + x B  '' r r3 ' 

where r = 121, and the functions A and B are defined as 

(2.6a) 

(2 .6b)  
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with R = hr. As R + O;A, B + 1, and S reduces to the Oseen tensor for steady Stokes 
flow. Furthermore, a t  very large R, S behaves like a potential dipole, suggesting that 
far away from the Stokeslet the flow tends to become irrotational. T is the stress 
tensor associated with the oscillating Stokeslet. 

Returning to (2.3), we select a point xo in the domain of the flow, and integrate this 
equation in a volume constricted by the particles, a very large spherical surface 
extending to infinity, and a very small spherical surface centred a t  the Stokeslet. We 
then use the divergence theorem to obtain an integral expression for the velocity at 
the point xo in terms of single-layer and double-layer distributions. For points on the 
surface of a particle this expression takes the form 

where f = a e f i .  For points in the interior of the flow, the factor 4xp in the 
denominator must be replaced by 87cp. The integration is over all particle surfaces, 
with f i  being the unit normal vector pointing into the fluid. In  the derivation of the 
above equation, we have assumed that the velocity vanishes a t  infinity at a 
sufficiently fast rate. If this is not true, the equation must be applied for an 
appropriately chosen disturbance flow that satisfies this restriction. 

Equation (2.7) may be conveniently simplified by extending the flow into the 
interior of each particle. Let u' be the internal flow that agrees with the external flow 
on the surface of the particle, and f' = a'-A be t,he corresponding surface traction on 
the interior surface of the particle. It is then easy to show that (2.7) may be written 
in terms of a surface distribution of Stokeslets, 

u.(xo) = -- f ; ( x )  s,(a) ds, 
3 87v 's s, 

w h e r e 7  = f-f .  This equation applies uniformly in the interior of the flow and on 
the particle surface. Note that the Stokeslet density distribution f" is no longer 
identified necessarily with the surface traction on the particle, and hence, the gain in 
simplicity may be counterbalanced by a compromise in the physical picture. For 
certain simple flows, u' a n d f  may be found by simple inspection. For instance, for 
flow produced by the translational oscillation of a particle, the velocity on the surface 
of the particle is a constant equal to v, and u' = v,f = h2v.xn. When u represents the 
disturbance flow due to the presence of a particle,f" is equal to total surface stress 
on the particle (Howells 1974). 

For axisymmetric flow, one may perform the integration in the azimuthal 
direction, reducing the surface integral into a line integral along the contour of each 
particle in a meridional plane 

where values of the indices (1 ,2) ,  indicate the (x, c)-direction respectively. Note the 
change in the order of the indices from (2.8) to (2.9). The matrix M is defined as 

P(uB30-a0 B31) (2.10) 
A + 9 A , ,  

P(cB31-c0B30) (c2+c~)B31-ccO(B30+B32) 

where (2.11) 

and similarly for B,,, with A and B defined in (2.6a, b) .  



22 C. Pozrikidis- 

Now, given the (total or* disturbance) velocity on the particle surface, (2.8) 
becomes a Fredholm integral equation of the first kind for the unknown surface force 
7. The form of this equation is identical to that developed by Ycungren & Acrivos 
(1975) for steady Stokes flow. The coniplex nature of its kernel discourages analytical 
treatment, and directs us to asymptotic and numerical solutions. 

2.1. Asymptotic solutions 

Before resorting to numerical solutions i t  is helpful to consider the asymptotic 
behaviour of the derived integral equation (2.8) for very high, and very low 
frequencies. This will allow us to derive certain useful results for the force exerted on 
a particle. For clarity, we address the single-particle case, but we note that the many- 
particle case may be treated in an entirely analogous manner. 

To obtain the asymptotic behaviour of the force on a particle immersed in high- 
frequency flow, we substitute in place of S its asymptotic form as R = hr tends to 
infinitv. to obtain 

(2.12) 

This expresses irrotational flow, u = V@, where the velocity potential @ is produced 
by a surface distribution of source-dipoles 

(2.13) 

Consistent with our assumptions, this equation is valid outside the viscous boundary 
layer, of thickness l / l A \ ,  residing along the particle surface. Thus, the flow produced 
by (2.12) satisfies the non-penetration but not the no-slip condition on the particle 
surface. Identifying (2.13) with a source-dipole distribution, yields 

f" = ,uA2@"n, (2.14) 

where @" the density of the distribution. 
For a particle which executes translational oscillations with velocity V = 

u exp ( -  iwt),  we may write @" = f- u ,  where 4; is the dipole distribution associated 
with motion in the i-direction, to obtain f = ,uAz$- YA. Integration over the surface of 
the particle gives the total force exerted on the particle as 

F = - '  IwpveA,  (2.15) 

where A is the added-mass tensor, given by 

A = s , ,4AdA> (2.16) 

(Yih 1979, p. 103). Thus, we have established that as is the case for inviscid flow, thc 
leading term of the force on the particle in high-frequency linear flow is simply that 
due to the added mass. Higher-order viscous correction terms may be obtained by 
considering correspondingly higher-order terms in the expansion of the integral 
equation. In  particular, the first correction term, proportional to A,  may be obtained 
in an alternative fashion, by considering the viscous dissipation in the boundary 
layer around the surface of the particle, as discussed by Batchelor (1967, p. 357). 

Let us now consider the low-frequency limit. We seek to determine the behaviour 
of the force on the particle as an asymptotic series with respect to the frequency 
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parameter A. The (total or disturbance) velocity on the surface of the particle is equal 
to v(x ,A)  (not necessarily a constant), and is assumed to be given in the statement 
of the problem. Thus, we expand v ,  S andf” in a Taylor series with respect to A ,  

where 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

and substitute into (2.8). Collecting coefficients of same powers in A gives a series of 
integral equations, the first three of which read 

(2.21 a )  

(2.21 b )  

where F”‘”) = ifcn) dA. The first-order problem (2.21 a )  describes steady Stokes flow. 
The second-order problem (2.21b) may be split into two parts. The first part 
describes steady Stokes flow with boundary velocity dl). The second part describes 
steady Stokes flow produced by the particle translating with velocity - F(O)/6n,u. 
For this second contribution we may write 

(2 .22b)  

where the resistance tensors rand  R produce the surface stress distribution and total 
force on the steadily translating particle. Similarly, the second-order problem (2.21 c) 
may be split into three parts. The first part corresponds to steady Stokes flow with 
the velocity on the particle surface equal to d2).  The second part corresponds to 
steady particle motion with velocity - F(’)/6np. The third part lacks simple physical 
interpretation. 

In particular, for an oscillating particle, the velocity on the surface of the particle 
is a constant equal to v ,  independent of A,  and we find thatf” = f -h2v-xA.  The above 
relationships then yield the total force on the particle as 
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FIGURE 1.  Definition sketch for an axisymmetric particle showing boundary discretization. 

where V, is the volume of the particle, and 
the integral equation 

= J f (2b) dA must be found by solving 

JsfW’,si.rda = - JS6.’1”’.S(0)&L. (2.24) 

To first order, the surface stress distribution is given by 

(2.25) 

For an orthotropic particle, the resistance matrix R is diagonal, and the above 
equation states that to first order, the surface stress distribution is identical in 
functional form, with the steady distribution. 

Perhaps the most important conclusion of the above asymptotic analysis is that 
the leading-order correction to the surface stress and to the force exerted on a 
particle which is impedded in general oscillatory flow may be found from the solution 
for steady translation. Higher-order corrections must be found by solving a series of 
boundary-value problems the first of which is described by the integral equation 
(2.21 c ) .  These results complement those of Kanwal (1964) and Williams (1966), for 
streaming axisymmetric, and streaming three-dimensional flow respectively. 

3. Solution of the integral equation for axisymmetric flow 
Our goal in this section is to develop a numerical procedure for solving (2.9) for 

f”, given the boundary velocity u. The steady version of this equation has been 
considered by several authors beginning with the pioneering investigation of 
Youngen 6 Acrivos (1975). Our approach is similar to that  developed by previous 
authors, with certain important variations due to the complexity of our kernel. 
Below, we summarize our strategy, and comment on certain important issues of our 
numerical implementation. 

As a first step, we represent the contour of the particle in a meridional plane using 
N elements that are defined by N +  1 nodal points (figure l) ,  and approximate the 
surface stress over each element as a constant function f ,” (n = 1, . . . , X ) .  We then 
evaluate f ,” by applying the integral equation a t  the centre of each element xm (m = 
1, . . . ,N). In  this fashion, we reduce the problem to solving a dense system of linear 
algebraic equations for f ,”. Specifically, applying (2.9) at  the collocation points yields 
a system of N equations 
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Sn denotes integration over the nth element. After decomposing the radial and axial 
components of the above equations into their real and imaginary parts, we end up 
with a linear system of real equations of size 4 N x  4N. 

For the accurate evaluation of the singular integrals in (3.2), we write 

in (xm)  = [M(xm;A)-M(xm;O)]dZ+ [M(xm;O)+2ln(r)4dZ-2/ ln(r)dZ, 

(3.3) 

where /is the identity matrix. The kernel M ( x ,  0) is provided by Youngren & Acrivos 
(1975), but for completeness, it is also given in Appendix A. The first two integrals 
on the right-hand side of the above equation are regular, and may be evaluated with 
sufficient accuracy by using a six- or twelve-point Gauss-Legendre quadrature. The 
third integral is singular, but i t  may be evaluated either analytically or numerically 
(by subtracting-off the singularity) over simple elements such as straight lines, 
parabolas, and circular arcs. 

The integrand M ( x ,  A )  - M ( x ,  0) in the first integral in (3.3) involves exponential 
functions with respect to the azimuthal angle 4, which may be evaluated by using 
regular numerical integration. In our implementation, we divide the interval [ 0 , 2 ~ ]  
into L divisions, and integrate over each division using the twelve- or twenty-point 
Gauss-Legendre quadrature. The maximum value of L in our calculations was 5 .  

Computations a t  high frequencies are prohibited by two pragmatic considerations. 
First, a t  high frequencies, the integrands in (3.3) exhibit pronounced fluctuations, 
requiring sophisticated but costly strategies of integration. Secondly, a t  high 
frequencies, the development of boundary layers requires boundary elements of 
small size, raising the cost of the computations to a prohibitive level. 

The error due to the various approximations involved in the above procedure may 
be readily assessed following Higdon (1985). For particles with smooth boundaries, 
approximating the force distribution with a stepwise constant function introduces an 
error of O(S2), where S is the length of a boundary element. Near corners, the error 
becomes of O(S),  but fortunately it affects the solution only locally. The error due 
to boundary discretization is a function of the geometry of the boundary elements. 
Straight segments yield error of O(S2) parabolas and circular arcs yield error of 

We performed computations using two types of boundary elements : straight 
segments and circular arcs. The two representations required comparable pro- 
gramming and computational effort. In both cases, the surface force was taken as a 
constant over each element, and thus, the overall error was of O(S2). For the arc 
representation, however, the magnitude of the error was reduced with respect to that 
for the straight segment representation, by as much as 10%. 

To test our numerical procedure, as well as to verify the error analysis, we 
compared our numerical results with the analytical solution of Stokes for streaming 
flow past a sphere. The behaviour of the error was monitored by recording the real 
and imaginary part of the axial force on the sphere. Using straight segments gave a 
precise NP2 dependence for both the real and imaginary part of the force. Using 
circular arcs gave an NP2 dependence for the imaginary part of the force, but an 
NW3 dependence for the real part of the force. This seemingly paradoxical behaviour 

1% s,. 6. 

O ( W .  



26 C. Pozrilcidis 

can be understood by noting that using arcs eliminates the boundary discretization 
as a source of error, and also, that in the exact solution, the real part of the surface 
stress is a constant, whereas the imaginary part of i t  is a sinusoidal function. 

The computations reported in the next section were performed on the CRAY X- 
MP/48 computer a t  SDSC. The solution of the integral equation with 48 boundary 
elements required approximately 3 min of CPU time. The maximum number of 
elements used was N = 64. Evaluation of the velocity a t  a point in the flow domain 
required approximately 4 s of CPU time. All of the results presented in the next 
section are accurate, in a global sense, to less than 0.5%. 

4. Results and discussion 
In  the preceding sections we cast the problem of linearized oscillatory flow in 

integral form, and established a numerical procedure for treating axisymmetric 
motion. Our present goal is to  probe into the physics of the flow by studying selected 
problems. 

As we stated in the introduction, our major objective will be to  assess the effect of 
the particle shape on the structure of the flow. We seek to accomplish this by 
selecting a reference problem, that is flow past a sphere, and by considering the 
change in the flow as the particle shape deviates from the reference state. We 
consider two classes of shapes : prolate and oblate spheroids, and particles in the form 
of dumbbells and biconcave disks. The former are chosen for their theoretical 
significance reflected in numerous previous investigations. The later are repre- 
sentative of particles with partially concave boundaries that are expected to 
exhibit distinct kinematical features. 

4.1. The sphere 

We prepare the grounds for our numerical results by discussing flow past a sphere, 
for which an analytical solution is available (Stokes 1851). To gain some physical 
insight into the structure of the flow, we present a sequence of instantaneous patterns 
for Ihl = 1 (figure 2). In  the beginning of a cycle, wt = 0, when the outer flow has 
maximum strength towards the positive x-axis, all of the streamlines are smooth, 
conforming with the curvature of the sphere (figure 2a) .  As the flow decelerates, 
viscous forces near the surface of the sphere cause the fluid to  reverse direction ; a t  
the critical time wt = 0 . 3 7 5 ~ ,  a thin region of recirculating flow, having the form of 
an elongated eddy that is attached to the sphere, emerges. At later times, the 
developed eddy grows, its centre moving away from the sphere (figure 2 b ) .  Right in 
the middle of a cycle, ot = 0.50x, as the outer flow vanishes, the eddy attains very 
large dimensions, but then, as the flow reverses direction, i t  shrinks and disappears 
(figure 2c, d ) .  Soon after that, during the accelerating flow period, the streamlines 
straighten out throughout the flow. We may describe this sequence of events as 
generation, expansion, and disappearance of an unsteady viscous eddy from a curved 
boundary. Increasing the frequency of the flow changes the structure, the lifetime, 
and the travel distance of an eddy, but leaves the qualitative features of the 
evolution unaffected. 

To obtain further insights into the structure of the flow, i t  is helpful to consider the 
distribution of shear stress on the surface of the sphere, given by 
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FIGURE 2. Instantaneous streamline patterns for flow past a sphere with IAl = 1.0, a t  (a) wt = 0;  
(b )  ot = 0.45; ( c )  wt = 0.50; (d )  wt = 0.51. Note reduced scale in the last panel. 

We note that the functional form of this distribution, linear in cr, is independent of 
the frequency of the motion. Furthermore, the phase of the distribution, q5 = - arctan 
(a/(&+ 1)) is constant along the surface of the sphere. This suggests that  the velocity 
in the vicinity of the sphere reverses direction a t  the same instant during each cycle 
of the motion, precluding the onset of stagnation points on the surface of the sphere. 
We shall see below that this is a unique feature of the spherical geometry. 

The effect of the frequency Ihl on the structure of the flow may be quantified by 
considering the velocity profile along the mid-plane of the sphere, at x = 0, v > a 
(figure 3b,  e) .  Considering the magnitude of the velocity (figure 3b)  we observe a 
smooth transition from the steady Stokes to the potential flow limit. The presence of 
a viscous boundary layer at Ihl = 10 becomes evident by comparing the velocity 
profile to the one for potential flow. Turning to  the phase of the velocity (figure 3e) ,  
we see that a t  vanishingly small frequencies it is equal to zero throughout the flow. 
At small but finite frequencies i t  is negative, whereas a t  higher frequencies i t  may 
become positive. Recalling that the phase of oscillatory flow over a flat plate is 

2 F L Y  202 
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FIGURE 3. Velocity profiles along the particle midplane x = 0 for a prolate (a ,  d) ,  a sphere ( h ,  e ) ,  and 
an oblate spheroid (c,f). Panels (a ,  6 ,  c) show the magnitude, and panels (d ,  e , f )  the phase of the 
velocity; b/a is the aspect ratio of the spheroid. 
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FIGURE 4. Instantaneous streamline patterns for flow past a prolate spheroid of b la  = 5.0, with 
IAl = 1.0, at  wt = 0;  ( b )  wt = 0.45; (c) ot = 0.50; ( d )  wt = 0.51. 

always negative, suggests that positive phase is attributed exclusively to the 
boundary curvature. As the frequency is increased, the phase of the velocity at a 
particular point decreases, reaches a negative minimum, and then it increases back 
to zero. The relationship between the phase and the frequency is not unique, and 
thus, one may not be deduced from the other. At very high frequencies, the phase at 
points far from the sphere tends to zero, whereas the phase at points very close to the 
surface of the sphere tends to -445". This behaviour is consistent with boundary- 
layer theory (Batchelor 1967). 

4.2. Spheroids 
We begin our numerical investigation by considering streaming axial flow past 
prolate and oblate spheroids. We discuss our results with respect to the frequency 
parameter lAl, defined by A* = -iioa2/v, where a is the axis of the spheroid 
perpendicular to the flow. The aspect ratio of the spheroid is equal to bla,  where b 
is the axis of the spheroid in the direction of the flow. 

In figures 4 and 5 we present two sequences of instantaneous streamline patterns 
2-2 
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FIGURE 5.  Instantaneous streamline patterns for flow past an oblate spheroid of b la  = 0.20, 
with Ihl = 1.0, a t  (a) wt = 0;  (b )  wt = 0.45; (c) wt = 0.50; ( d )  wt = 0.51. 

for a prolate and an oblate spheroid of aspect ratio b/a = 5.0 and 0.2 respectively, 
and for Ihl = 1.0. Overall, we observe that the main features of the evolution are 
similar to those for the sphere : in all cases we obtain generation, expansion, and final 
disappearance of a viscous eddy. We note however that the shape of the dividing 
streamline enclosing an eddy conforms with the particle shape (figure 46, 5 b ) .  More 
importantly, as we shall see below, the precise mechanism of eddy formation is 
dependent on the particle shape in a subtle manner. 

We now address the flow in a more quantitative manner by considering the 
distribution of shear stress on the surface of the spheroids. It is important to note 
that the shear stress provides useful information not only on the structure of the 
flow, but also on the rate of simultaneous convective processes a t  high PBclet 
numbers (Higdon 1985). Indeed, in cases of material dissolution or deposition, the 
magnitude of the shear stress determines the location and direction of emerging 
protrusions or cavities. 

We saw that the shear stress distribution on the sphere is a sinusoidal function 
with constant phase, a t  all frequencies. In  figures 6 and 7 we present characteristic 
results for spheroids with b / a  = 5.0 and 0.2. For clarity of illustration, in figure 
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FIGURE 6. The magnitude of the shear stress along the surface of (a )  a prolate and ( b )  an oblate 
spheroid for different frequencies ; s = 0.50 corresponds to the midplane 5 = 0. 

6 (a, b )  we have reduced the magnitude of the shear stress by that at the midplane of 
the spheroid (in absolute terms, the magnitude of the shear stress increases a t  an 
almost linear rate as Ihl is increased). Considering figure 6(a ,  b ) ,  we observe a family 
of curves that are bounded by the one for steady Stokes flow and the one for potential 
flow (which is proportional to the tangential velocity along the surface of the 
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FIGURE 7 .  The phase of the shear stress (in degrees) along the surface of (a )  a prolate and ( b )  an 
oblate spheroid. 

spheroid in streaming potential flow, Lamb 1932, p. 141). For the sphere, these two 
extreme distributions coincide, but for spheroids they show quite distinct behaviour. 
For the prolate shape (figure 6a)  there exists a maximum in each distribution ; for 
steady flow this occurs near the tip of the spheroid, whereas for high-frequency flow 
it occurs a t  the midplane of the spheroid. In  contrast, for the oblate shape (figure 6 b )  
the maximum stress always occurs a t  the midplane of the spheroid. The shear stress 
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FIGURE 8. Schematic illustration of the motion of the stagnation points on the surface of (a)  a 
prolate and ( b )  an oblate spheroid. 

distribution becomes steeper around the maximum as the frequency is increased. In 
view of the above comments on the significance of the shear stress on convective 
processes, we conclude that the frequency of the flow is an important parameter in 
applications involving heat and mass transport. 

We now examine the distribution of the phase of the shear stress q5(s), shown in 
figure 7 (a,  b).  At very low frequencies $(s) vanishes, whereas a t  very high frequencies 
it tends to - 4 5 O ,  in accordance with boundary-layer theory (Batchelor 1967). For 
prolate spheroids $(s) increases in a monotonic fashion from the centre to the tip of 
the particle. For oblate spheroids the inverse is true. We now recall that vanishing 
of the shear stress signals the appearance of a stagnation point, and thus, the 
presence of a viscous eddy attached to the particle. The shear stress vanishes 
when the real part of exp (i(q5-wt)) becomes equal to zero, or equivalently, when 
wt = in - q5 + n x ,  where n is an integer. We thus conclude that for prolate spheroids, 
a stagnation point appears a t  the particle midplane during the deceleration period 
(0 < wt < in). It then starts travelling towards the tip of the spheroid, as shown in 
a schematic manner in figure 8(a) .  Finally, it detaches from the surface of the 
spheroid and moves along the x-axis into the flow. Further evolution is similar to 
that for the sphere. The travel speed of the stagnation point while on the surface of 
the particle is equal to ds/dt = w(d+/ds)-', whereas its total travel time is equal to 
Aq5/w; Aq5 is the total variation of the phase on the surface of the particle. For oblate 
spheroids, the stagnation point is born on the x-axis, it travels towards the particle 
midplane (x = 0) ,  and merges with its symmetric counterpart to yield a closed 
recirculation region (figure 8 b ) .  Further evolution is similar to that for the prolate 
spheroid or for the sphere. Unfortunately, an accurate computation of streamline 
patterns showing the motion of stagnation points could not be achieved, restricting 
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us to the schematic illustrations of figure 8. I n  a more general context, the above 
results indicate that viscous eddies are generated at regions of low curvature during 
flow deceleration. Then, they expand and move away from their place of birth and 
into the flow. They shrink and disappear during the accelerating flow period. 

It is of interest to consider velocity profiles along the particle midplane (figure 
3a, c, d ,  f ). Overall, these appear quite similar to those for the sphere, shown in figure 
3 (6 ,  e ) .  Cursory inspection though reveals certain interesting, subtle variations. 
First, one may observc that for prolate spheroids, the maximum attained velocity 
may exceed that for potential flow, figure 3 ( a ) .  Secondly, for fixed frequency, the 
magnitude of the velocity a t  a particular point in the flow increases as the particle 
becomes more oblate. Furthermore, for fixed frequency, the phase of the velocity a t  
a particular point decreases as the spheroid becomes more prolate. This implies that 
the flow has stronger viscous characteristics, attributed to the increased local 
boundary curvature. Prolate spheroids reach the boundary-layer flow regime at  
lower frequencies than oblate spheroids. 

The total force on a spheroidal particle executing translational oscillations may be 
easily computed in our numerical procedure. Our results are in perfect agreement 
with those reported by Lawrence &, Weinbaum (1988) and Pozrikidis (1988b). 

4.3. Dumbbells and biconcave disks 

In  the second stage of our computations we consider axisymmetric particles whose 
contour is described by r = a[l +a2P2(8 ) ] ,  where r2 = X ' + ~ T ' ,  8 is the polar angle, 
P2 is the second-degree Legendre polynomial, a2 is a scalar shape factor with values 
in the range [ - 1,2], and a is a characteristic lengthscale that we set equal to  the 
maximum particle size in the c~ direction. Positive a2 defines prolate particles, 
whereas negative a2 defines oblate particles. Values of a2 below -a or above $ yield 
particles with a partially concave shape, resembling dumbbells and biconcave disks 
respectively (figure 9).  In our discussion we refer to the frequency parameter h 
defined with respect to a, h2 = - iwa2/v. 

We begin by showing two characteristic instantaneous streamline patterns for a 
prolate and an oblate particle, a2 = 2.0 and -0.80, and for (hl = 1.0 (figure 9). As a 
new feature in the streamline pattern a t  wt = 0, we observe the presence of 
recirculating flow in the vicinity of the concave regions (figure 9a,c). During the 
decelerating flow period we observe the onset of the familiar unsteady free eddies 
enclosing the particle (figure 9b, d ) .  We note in particular that  these eddies coexist 
with wall corner eddies residing within the concave regions. The free eddies shrink 
and disappear during the accelerating flow period, but the wall corner eddies manage 
to survive throughout each cycle of the flow. 

The precise behaviour of the wall corner eddies, and the associated motion of the 
wall stagnation points, becomes clear by considering the distribution of the 
magnitude and of the phase of the shear stress $(s) on the particle surface (figures 10 
and 1 1 ) .  In figure 10 (a ,  b )  we observe that the magnitude of the shear stress exhibits 
oscillatory decay within the concave regions. For steady flow, Ihl = 0, i t  vanishes a t  
a number of points, indicating the presence of wall stagnation points that separate 
adjacent wall corner eddies. The precise structure of these steady eddies has been 
analysed by a number of authors including Dorrepaal et al. 1976a, b, Wakiya 1976 
and Davis et al. 1976. As the frequency of the flow is increased, the magnitude of the 
shear stress becomes positive, shifting smoothly towards its potential flow limit. 
Turning to the phase of the shear stress $(s), we notice that for steady flow it is 
discontinuous, undergoing a jump by 180" every time a stagnation point is crossed 
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FIGURE 9. Instantaneous streamline patterns for flow past a dumbbell (a, b ) ,  and a biconcave disk 
( c , d )  of a, = 2 and -0.80 respectively, with /A1 = 1.0, a t  (a) wt = 0 ;  ( b )  wt = 0.45; (c) wt = 0;  
( d )  wt = 0.45. 

(figure lla, b) .  As the frequency is increased, $(a) becomes continuous, with rapid 
variations within the concave regions (large d$/ds). A t  very high frequencies, $(s) 
tends towards its asymptotic limit of -45' dictated by boundary-layer theory. 

To understand the behaviour of the wall eddies, we recall that the speed of a 
stagnation point on the particle surface is equal to ds/dt = w(d$/ds)-'. This indicates 
that in the beginning of a cycle, the outermost stagnation point, located within the 
concave region, starts moving outwards very slowly, causing a correspondingly slow 
growth of the adjacent eddy. Then, it suddenly accelerates away from the concave 
region, travelling towards the tip or the midplane of the particle depending on 
whether the particle is prolate or oblate. This causes a sudden expansion of the 
accompanying eddy. Finally, it moves into the flow just as in the case of spheroids. 
The fact that the difference in $(s) between two points on the particle surface may 
exceed 180" suggests that multiple wall eddies may coexist. When the outermost 
corner eddy starts expanding, the first eddy underneath moves to take its place. This 
eddy awaits expansion in the next cycle of oscillation. 
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FIGURE 10. The magnitude of the shear stress along the surface of the dumbbell and the 
biconcave disk shown in figure 9;  s = 0.50 corresponds to the particle midplane z = 0. 

Thus, we see that in the case of a particle with concave boundaries, unsteady 
eddies may originate from the expansion of pre-existing corner eddies, rather than 
through the spontaneous appearance of stagnation points on the surface of the 
particle. For a particle with deep enough corrugations, corner eddies may coexist 
with free eddies evolving in the interior of the flow. 
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FIGURE 11. The phase of the shear stress along the surface of the dumbbell and the biconcave 
disk shown in figure 9. 

Let us now consider the total force on dumbbells and biconcave disks executing 
translational oscillations (figure 12a, b and table 1). This is of interest in applications 
involving the motion of particle aggregates or red blood cells (having the shape of 
dumbbells and biconcave disks respectively), and provides us with the opportunity 
to discuss certain global characteristics of the flow. Due to the computational 
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FIGURE 12. The magnitude (a),  and phase ( b )  of the total force on dumbbells and biconcave disks 
in translational oscillation ; FE stands for the steady Stokes resistance in axisymmetric motion. 
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I4 u2 = 2.00 u2 = 1.00 a2 = 0.80 

0 26.762 0 25.347 0 17.303 0 
0.1 29.570 - 5.278 27.861 - 5.025 18.460 -3.571 
0.5 42.673 - 19.425 39.549 - 18.820 23.766 - 5.325 
1.0 61.421 -28.929 56.344 - 28.370 31.745 -25.920 
2.0 103.388 -38.895 94.164 -38.415 51.713 - 39.588 
5.0 260.796 -52.244 235.571 - 51.689 141.855 -58.639 

TABLE 1 .  The magnitude and phase (in degrees) of the axial force F/pvu on dumbbells and 
biconcave disks in axial oscillation 

difficulties discussed in 93, our results are limited to (A1 < 5.0. The magnitude of the 
force is shown in figure 12 (a)  on a log-log scale. At  low frequencies, we observe a slope 
of unity in agreement with the asymptotic analysis of $2. At high frequencies we 
expect a slope of 2, owing to the dominant contribution of the resistance due to added 
mass. The transition from the low- to the high-frequency behaviour appears to be 
smooth despite the rather irregular particle shapes. At low frequencies, the force on 
prolate particles is higher than that on oblate particles, whereas at  high frequencies 
the inverse is true. This is due to the fact that the viscous drag coefficient of prolate 
particles is pronounced owing to their increased surface area, but their added mass 
is reduced owing to their streamlined shape. The phase of the force is a measure of 
the relative importance of viscous and inertial forces, ranging between 0" and -go", 
for quasi-steady and potential flow respectively. Accordingly, the phase of the axial 
force, shown in figure 12(b), indicates that oblate particles reach the potential flow 
regime at  lower frequencies than prolate particles. 

5.  Closing remarks 
Sobey (1980, $4.4) studied'linearized oscillatory flow in two-dimensional furrowed 

channels using a finite difference method. He compared his results to those arising 
from the exact solution of full Navier-Stokes equations, and found good agreement 
for Reynolds numbers as high ;t9 3.75. He also indicated that linearization is valid for 
arbitrary Reynolds number as long as the Strouhal number is of order one. His 
conclusions are in qualitative agreement with ours, and may be summarized as 
follows. Flow over curved boundaries reverses direction always in the decelerating 
time period. Depending on the frequency of the flow reversal may first occur over a 
concave or a convex boundary. The generated eddies expand around the time of zero 
mean flow. A free and a wall eddy may coexist in the vicinity of a curved boundary. 
Ralph (1986, $4) arrived at similar conclusions in his study of oscillatory flow in 
axisymmetric furrowed tubes. We may therefore conclude that the basic physical 
mechanisms of linearized oscillatory flow are independent of the type of geometry 
constricting the flow. 
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Appendix A 

follows 
The elements of the matrix M for axisymmetric, steady flow, are given as 

where F and E are the complete elliptic integrals of the first and second kind 
respectively , with argument 

4uu0 
(x- ZO)* + (a  + ao)'. 
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